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technological cumulative charge, design optimization 
 

The cumulative liner velocity independence assumption from time in its work under detonation 
products is made on a foundation to the flat-radial Orlenko-Stanukovitz’s schema about cumulative charge 
operating. The Cauchy problem for ordinary differential equation of first order is formulated relative to an 
unknown function of the technological cumulative charge geometry. The equation solution allows 
constructing a technological profile of a cumulative liner at a given profile of the charge body 

 
1. Introduction 
The availability of a velocity gradient lengthwise of cumulative jet is the factor of decrease 
of operation performance of a shaped charge on defocused distances. If the velocity 
gradient can be decreased or got to zero then the charge performance of operating will be 
increased in a large distances from the target. This is advantage of a long-focus shaped 
charge. 
It is possible to optimize charge operating with intent by usage of different profiles for part 
of the charge. The flat-radial Orlenko-Stanukovitz’s schema for simulation of a cumulative 
action allows contacting between geometry of charge elements and their mechanical 
performances. The solution of a problem for optimized element of a charge is reduced to 
determination of a profile of a surface of this element, at the given performances and 
profiles of other elements. In result it also is the Cauchy problem for a differential equation. 
The utilization of such problem takes place at designing of new ammunition at geometrical 
limitations for its construction. The ‘external’ limitations are a cylindrical profile of the shell 
in artillery ammunition for example. The ‘internal’ limitation is technological conical liner of 
the cumulative charge. 
 
2. A Cauchy problem 
Let's analyze a process of the cumulative liner reduction in following reports of the writers 
[1,2] - fig.1. In the Cartesian zOy system the equations of curves are given, they 
determinate elements surfaces of a shaped charge at rotation around an axis Oz. The 
equation y1=F(z) is for an external surface of the shell. The equation y2 = Φ(z) is for an 
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internal surface of the shell. The equation y3 = ϕ(z) is for an external surface of a 
cumulative liner. The equation y4=f(z) is for an internal surface of a cumulative liner. The 
equation y2 = Φ(z) simultaneously describes an external surface and equation y3 = ϕ(z) 
describes an internal surface of an explosive charge. 
The functions y1(z), y2(z), y3(z) and y4(z) are bounded they are continuous and have 
continuous firs derivatives and they execute following conditions: 
 

F(z) ≥ Φ(z) ≥ ϕ(z) ≥ f(z); h2 > 0; z ∈ [0; h2]; y ≥ 0. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1. Cumulative charge schema and its main identifications. 
It is accepted the explosive charge is isotropic and homogeneous (we leave out 
technological defects). The front of a detonation wave moves on mass of explosive charge 
from left to right and it is a flat and perpendicular to axis Oz. In time t = 0 the detonation 
wave reaches top of a cumulative liner and at t > 0 the wave are moving along a liner with 
detonation velocity D. 
The schema of a cumulative liner reduction is utilized on fig.2 [3]: 
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Fig.2. Reduction schema and cumulative liner collapse. 
The elementary part of a liner with coordinate z and length dz is selected. In time  
t = z/D the point A of this part starts moving to a charge symmetry axis with velocity W0(z). 
During time dt = dz/D while the detonation wave will reach a point B the point A will be 
displaced in a direction of axis Оz on distance dy which one determinates itself under the 
formula [3]: 

D
dzzWdtzWdy )()( 00 ==                                  (1) 

and will be on distance from axis Оz: 

D
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We make an assumption. The velocity W0(z) does not depend on time and it is a function 
only coordinate z [1,2]. Then point A will pass a distance R for time: 
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For the same time the point B is displaced in a direction of an axis Oz with velocity W0(z) + 
dW0(z) and point B is traveled a path: 
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and B will be from an axis Oz at distance L2: 
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The collapse angle of a cumulative liner part on fig.2 is determined under the formula: 
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The reduced velocity W0(z) of an elementary part of liner with length dz is connected to 
cumulative jet velocity W1(z) in considered cross-section z by a kinematics proportion [1,2]: 

[ ] 1
10 )(2)(

22
)()()( −+== zzDkztgzWzW i ββα .                              (7) 

Then 



 4

D

ztgzW

dz

ztgd
zWztg

dz
zdW

ztgzW

zf
dz

zdfztg 2
)()()

2
)((

)(
2

)()(

2
)()(

)()()(
1

1
1

1

αα
α

α
α +



















+−= .     (8) 

If we shall demand the condition W1(z) = W1 = const, we take following equation: 
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In an equation (9) functions tg (z), sin (z), 
2
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functions so: 
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where ∈(z) is some intermediate function 
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The first derivative from ∈(z) is 
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Then the equation (9) accepts a following view: 
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Densities of materials of the shell and the explosive charge and the cumulative liner 
ρK,,ρВВ,,ρО are constant values. Then the elementary masses of the shell, the explosive 
charge and the liner Mн(z), m(z), M(z) participate in following expression so: 
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Then we can receive a following equation: 
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The equation (27) is a differential equation of first order for unknown one of functions F(z), 
Ф(z), ϕ(z) or f(z) at given other three and initial conditions for an unknown function. This 
equation is assumed for formulation of a Cauchy problem about determination of the 
geometrical performance of a cumulative charge, which one ensures no-gradient forming 
of a cumulative jet. 
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This way allows supplying no-gradient forming of a cumulative jet by a solution of a 
Cauchy problem. The following two cases are baseline for such optimization. 
 
3. Examples 
3.1. Cumulative Liner Profile Design for No-Gradient Cumulative Jet 
Let's study one of possible version of realization of a problem (27). At designing of cargo 
ammunition cumulative charge, it is necessary to link of geometry of the submunition shell 
with a profile of the camera of the projectile. This is a ‘internal’ limitation. 
It is introduced a new designation for an equation of thickness of a cumulative liner on a 
normal to an axis Оz by the function δ(z) = ϕ(z) -f (z) (δ(z) = const is a special case). The 
problem is decided at the indicated assumptions and limitations above. 
By analogy (27), it is possible to show 
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where [ ]{ } 1)()()()()(1)( −+−= zgzCzbzBzEzQ                                                                 (31) 

and the values b(z), e(z), g(z) are determined similarly (21) - (26) with allowance for links 
δ(z).     
In result, the Cauchy problem is formulated for a differential equation of first order 
concerning an unknown function f(z). The numerical solution of a problem allows 
constructing a profile of a cumulative liner for no-gradient forming of a cumulative jet. For 
its solution it is necessary to admit the hypothesis: f(0) - is small on value. Then the first 
value of an unknown function f (z) can be received with the help of the formula of the 
Euler: 

.)()()( 001 zztgzfzf ∆+= α                     (32) 

Fig.3 demonstrates a solution of a problem 3.1 for no-gradient cumulative jet with vary of a 
liner thickness δ(z) = δ = const: δ1 = 1 mm; δ2 = 2 mm; δ3 = 3 mm; δ4 = 4 mm, for a 
cumulative charge by constant thickness of the cylindrical shell. 
Fig.4 demonstrates a solution of a problem 3.1 for no-gradient cumulative jet with vary of 
velocity of a cumulative jet W1 = const: W1,1 = 5000 m/s; W1,2 = 7000 m/s; W1,3 = 9000 m/s; 
W1,4 = 11000 m/s; W1,5 = 13000 m/s for a cumulative charge by constant thickness of the 
cylindrical shell. 
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But the decided cumulative liner is not technological. In this case the new cumulative liner 
form could make a problem in serial manufacture. That is why we have to determinate a 
partial solution for this problem where the limitation for cumulative liner must be a conical 
form and no-gradient jet. 
3.2. Conical Cumulative Liner Profile Design For No-Gradient Cumulative Jet 
Let's study another version of a problem realization (27). In this case the we are going 
required a condition for technological and conical type of liner and a cylindrical type of the 
shell. At designing of cargo ammunition cumulative charge, it is necessary to link of 
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Fig.4. 
 
geometry of the submunition shell with a profile of the camera of the projectile. This is an 
‘internal’ limitation. 
It is introduced a new designation for an equation of thickness of a cumulative liner on a 
normal to an axis Оz by the function δ(z) = ϕ(z) -f (z. In this case δ(z) ≠ const and ϕ´(z) = 
const and f´ (z) = const and F´(x) = Ф´(x) = 0. The problem is decided at the indicated 
assumptions and limitations above and by analogy (27) we can write 
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where [ ]{ } 1)()()()()(1)( −+−= zgzCzbzBzEzQ                                                                 (35) 

and the values b(z), e(z), g(z) are determined similarly (21) - (26) with allowance for links 
δ(z).     
In result, the Cauchy problem is formulated for a differential equation of first order 
concerning an unknown function δ(z). The numerical solution of a problem allows 
constructing a conical profile of a cumulative liner for no-gradient forming of a cumulative 
jet in case of cylindrical shell. 
Fig.5 demonstrates a solution of a problem 3.2  
 

 
Fig. 5. 

 
Fig. 6 shows the decision of a straight line problem for cumulative construction which we 
designed. 
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4. Conclusion 
The obtained results are tested by experiment and the criterion for no-gradient cumulative 
jet was checked up through the depth of armor penetration in a homogeneous steel armor. 
At variation of distances between a cumulative charge and barrier the depth piercing was 
saved approximately constant, which one is the evidence of obtained theoretical results – 
fig 7 

 
Fig. 6. 

 
 

 
Fig. 7. 
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